全新金刚石材料的复合纳米粒

发表于 讨论求助 2023-05-10 14:56:27

点击上方蓝字关注“公众号”

全新金刚石材料的复合纳米粒


美国马里兰大学的研究团队利用全新技术研制出了金刚石材料的复合纳米粒,解决了现有技术工艺的诸多问题。



该技术从纳米金刚石缺陷—氮空位(NV)中心入手,NV中心使金刚石具备独特的光学和电磁性能。通过将其他材料如金属粒和称之为“量子点”的半导体材料和金刚石结合,工作者研制出了一系列材料属性可定制的复合纳米粒,包括纳米半导体和磁体材料等。


由覆盖着纳米银粒子的纳米金刚石(50纳米宽)构成的混合纳米粒子的电镜图像



马里兰大学副教授、本研究作者Min Ouyang介绍到,如果将金属材料如银粒子或金粒子同纳米金刚石结合,那么纳米金刚石的光学性能就能得到增强;如果将半导体量子点同纳米金刚石结合,那么复合粒子就能更有效地传递能量。


研究还发现,每个NV都具有量子物理属性,室温下可以充当量子比特。量子比特是量子计算技术领域迄今为止尚未探索明白的功能单元;在将来该技术有望彻底改变人类存储和处理信息的方式。目前,所有量子比特的研究都需要超低温的技术条件以实现设备的正常运转操作。



室温下工作的一个量子比特代表技术的一大进步,它能够促进量子线路在工业、商业和电子消费品领域的整合和应用。Min Ouyang特别强调到:作为量子比特,金刚石材料的纳米复合粒子在氮空位中心性能方面有着重要作用。


该技术不仅未来前景良好,制备复合纳米粒的方法较以前也有很大突破。以往的研究在对纳米金刚石进行其他粒子结合时,所用方法不甚精准,通常采用手动方法将金刚石和其他粒子逐个结合在一起的。这些工艺成本高且耗时,同时还会带来一系列技术上的并发症。


“我们的核心创新技术是能够稳定高效地批量生产这些复合纳米粒”,Min Ouyang补充道。这种新型工艺还能实现对粒子属性的精准控制,如纳米金刚石的数量和组份等。这种新技术或将用于室温下量子计算机量子比特的设计、生物医学成像、高敏磁性传感器和温感器等。


金刚石是自然界存在的特殊材料之一,具有最高的硬度、低摩擦系数、高弹性模量、高热导、高绝缘、宽能隙、高的声传播速率以及良好的化学稳定性等,如下表。虽然天然金刚石具有这些独一无二的特性,但是它们一直仅仅是以宝石的形式存在,其性质的多变性和稀有性极大地限制了其应用。而洛阳誉芯金刚石制备的CVD金刚石膜将这些优异的物理化学性能集一身,且成本较天然金刚石低,能够制备各种几何形状,在电子、光学、机械等工业领域有广泛的应用前景。

Tiny Diamonds Could Enable Huge Advances in Nanotechnology

University of Maryland researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods.



The process begins with tiny, nanoscale diamonds that contain a specific type of impurity: a single nitrogen atom where a carbon atom should be, with an empty space right next to it, resulting from a second missing carbon atom. This “nitrogen vacancy” impurity gives each diamond special optical and electromagnetic properties. 



By attaching other materials to the diamond grains, such as metal particles or semiconducting materials known as “quantum dots,” the researchers can create a variety of customizable hybrid nanoparticles, including nanoscale semiconductors and magnets with precisely tailored properties.


“If you pair one of these diamonds with silver or gold nanoparticles, the metal can enhance the nanodiamond’s optical properties. If you couple the nanodiamond to a semiconducting quantum dot, the hybrid particle can transfer energy more efficiently,” said Min Ouyang, an associate professor of physics at UMD and senior author on the study. 


Evidence also suggests that a single nitrogen vacancy exhibits quantum physical properties and could behave as a quantum bit, or qubit, at room temperature, according to Ouyang. Qubits are the functional units of as-yet-elusive quantum computing technology, which may one day revolutionize the way humans store and process information. Nearly all qubits studied to date require ultra-cold temperatures to function properly. 



A qubit that works at room temperature would represent a significant step forward, facilitating the integration of quantum circuits into industrial, commercial and consumer-level electronics. The new diamond-hybrid nanomaterials described in Nature Communications hold significant promise for enhancing the performance of nitrogen vacancies when used as qubits, Ouyang noted.


While such applications hold promise for the future, Ouyang and colleagues’ main breakthrough is their method for constructing the hybrid nanoparticles. Although other researchers have paired nanodiamonds with complementary nanoparticles, such efforts relied on relatively imprecise methods, such as manually installing the diamonds and particles next to each other onto a larger surface one by one. These methods are costly, time consuming and introduce a host of complications, the researchers say. 


“Our key innovation is that we can now reliably and efficiently produce these freestanding hybrid particles in large numbers,” explained Ouyang, who also has appointments in the UMD Center for Nanophysics and Advanced Materials and the Maryland NanoCenter, with an affiliate professorship in the UMD Department of Materials Science and Engineering.


Diamond, as one of the most special materials in natural world, is featured with the highest hardness, low friction coefficient, high elasticity modulus, high thermal conductivity, high insulation class, wide energy gap, great sound propagation rate and favorable chemical stability, which are presented in below Table. In spite of such unique features, the natural diamond has always been existed in the form of gem, with its variability and rareness sharply limiting its application. Luoyang Yuxin Diamond Co., Ltd’ s CVD Diamond film, on the other hand, integrates such physical and chemical properties, with lower cost than natural diamond and applicable to be made into various shapes, thus enjoying extensive application prospect in electronic industry, optical field and mechanical industry.

 

誉芯金刚石全体员工

恭祝您新快乐!                 万事大

长按左边二维码

感谢您一路支持

发表
26906人 签到看排名